
A Practical Look at Network Automation

Jason Edelman

@jedelman8

jedelman.com

jason@networktocode.com

AGENDA

• Why Are We Here?

• SDN Alongside Network Automation

• Use Cases

• Action Plan

AGENDA

• Why Are We Here?

• SDN Alongside Network Automation

• Use Cases

• Action Plan

WHY ARE WE HERE

• OpenFlow

• Software Defined Networking

• APIs

• DevOps

• Network Automation

• Learn how to Program?

source: Wikipedia.com

THE REALITY

PROBLEM: NETWORK AGILITY

1994 2014

Terminal Protocol: Telnet Terminal Protocol: SSH

1994

s
o
u
rc

e
:

B
ig

 S
w

it
c
h
 N

e
tw

o
rk

s

LOOKING AHEAD

• Network Operations does in fact

need to be improved, but there is

more…

• Need to embrace the people that

embrace the culture, process, and

technology that adapt to change

• Re-think: Engineer for Change

AGENDA

• Why Are We Here?

• SDN Alongside Network Automation

• Use Cases

• Action Plan

EVOLVING ECOSYSTEMS

Cloud Management
Platforms

Controller Based
Networking Fabrics

Network Automation
Tools

Programmable
Network Devices

NX-API onePK eAPI

Cumulus JunOS XML API de jour

RESTACI NSX OpenDaylight

REST Big Cloud Fabric

Plexxi

Nuage

Are These Divergent Paths?

EVOLVING ECOSYSTEMS

Cloud Management
Platforms

Controller Based
Networking Fabrics

Network Automation
Tools

Programmable
Network Devices

NX-API onePK eAPI

Cumulus JunOS XML API de jour

RESTACI NSX OpenDaylight

REST Big Cloud Fabric

Plexxi

Nuage

Programmability and Platform Extensibility Should be Key Decision Making Criteria

CONSISTENCY

Cloud Management Platforms

Network Automation Platforms & Tool Chains

Controller Based
Networking Fabrics

Programmable Network
Devices

NX-API onePK eAPI

Cumulus JunOS XML API de jour

RESTACI NSX OpenDaylight

REST Big Cloud Fabric

Plexxi

Nuage

Consistent policy, configuration, tools, and common languages and interfaces

DESIGN FOR CHANGE

AGENDA

• Why Are We Here?

• SDN alongside Network Automation

• Use Cases

• Action Plan

Let’s Get Practical

Template Building

Data Collection

Super Commands

Troubleshooting (Ops)

Source Control

Provisioning

Device Configurations, Vendor Migrations, IPv4 to IPv6 Migration,
Site Rollouts, Office/DC Relocations, BYOD configs for switches

Cabling Check, Neighbors, Serial Numbers (support contracts?),
Linecards, Modules, Audit Checks, PSIRT checks

Wireless Client to AP to Switchport, Phone to switchport, BGP Table
+ Routing Table, Integrate to UC, WLAN, IPAM

Cabling, L2 neighbors, L3 adjacencies (have it tell you WHY the
neighbor relationship failed), Interface Errors, ACLs

Configuration, Templates, Dynamic state stored in central
repositories. Re-deploy infrastructure  DR/BCP, Relocations

The Scary Part? Configs, config snippets, one-off changes

SO MUCH CAN BE DONE WITHOUT “PUSHING” CONFIGS

TEMPLATE BUILDING

YAML

WHERE TO BEGIN?
TEMPLATIZE CONFIGS

DE-COUPLE THE VARIABLES

YAML

RENDER THE TEMPLATE

Render script Jinja2 Template

(config)

YAML File

(vars)

Great way to get started, but for more

robust templates, a “real” tool should be

used.

Render script

available on my

GitHub page.

Think config snippets:

• v4 to v6

• BYOD

• one-offs
https://github.com/jedelman8/interop-nyc-2014

CABLE VERIFICATION

• Is the cabling accurate?

• How do you know if something is

mis-cabled?

• Ever work 3rd party contractors

that cable based on your patch

schedule and somehow it doesn’t

come out right?
source: peterskastner.files.wordpress.com

DEFINE THE DESIRED STATE

1 Define the Desired Cabling Scheme

YAML

(only showing portion of YAML file)

OBTAIN THE ACTUAL STATE

1 Define the Desired Cabling Scheme

2 Get the actual (run time) topology via

CDP/LLDP

Multiple methods available

This example uses a Python script

and gets neighbor info using NX-API

on the Nexus 9000

(only showing portion of YAML file)

DESIRED VS. ACTUAL

1 Define the Desired Cabling Scheme

2 Get the actual (run time) topology via

CDP/LLDP

3 Examine Desired vs. Actual

(only showing portion of YAML file)

PAUSE: SAMPLE NX-API OUTPUT

NX-API

< 20 Lines of Code

1 Connect to Device

2 Wrap CLI and get return data

3 Convert XML to dict (JSON)

4 Extract CDP information

5 Print CDP information

TROUBLESHOOTING OSPF

• Remember how neighbors are

formed in OSPF?

• Do you remember at 3am on a

Saturday?

• Does the junior network engineer

remember when you’re on

vacation?

TROUBLESHOOTING OSPF

• Remember how neighbors are

formed in OSPF?

• Do you remember at 3am on a

Saturday?

• Does the junior network engineer

remember when you’re on

vacation?

• How about we automate the

process of a neighbor check?

• Do we really enjoy bouncing back

and forth between routers?

• Let’s get to it!

ANSIBLE

GET FACTS AND ANALYZE

Everything else

is just printing

data from facts

THE ANSIBLE PLAYBOOK

THE ANSIBLE PLAYBOOK

• ospf_facts is an Ansible module

• Ansible modules can be written

in Python

• BUT, WHO WRITES THEM?

WHAT OPTIONS DO WE HAVE FOR TOOLS?

DIY

Closed
Turnkey
Solution

Sweet

spot.

AGENDA

• Why Are We Here?

• SDN alongside Network Automation

• Use Cases

• Action Plan

ACTION PLAN

• Dedicate time, maybe lots…

– Remember how much time it took

to get your existing certifications

or learn any new skill?

• Document existing workflow and

processes

– Start with small tasks

– You can’t automate what you don’t

know

• Research DevOps Culture

ACTION PLAN

• Dedicate time, maybe lots…

– Remember how much time it took

to get your existing certifications

or learn any new skill?

• Document existing workflow and

processes

– Start with small tasks

– You can’t automate what you don’t

know

• Research DevOps Culture

• Templating

– Jinja2/YAML

• Scripting

– Not building applications!

– Python

• Try out a Device API

• Explore automation tools

– Ansible (even if it’s to see what

can be done with servers)

THANK YOU

